Microdosing:
An opportunity for safer drug development in children?

Saskia N. de Wildt
Professor of Clinical Pharmacology
Pediatric Intensivist-Clinical Pharmacologist
Magnitude of the problem

Fatalities in children

1959

2007
Drug failure – HIV example

Blood levels

- Too low
- Adequate

Van Rossum, Fraaij, de Groot Lancet ID, 2002
Microdosing: smart solution?

- Microdose
 - 1/100 of therapeutic dose
 - or max 100 µg
 - ± Radioactive label: ^{14}C

- Drug levels with LC-MS or AMS

- FDA/EMA supported
Dose linearity important

Figure 4 Time profiles of AAP and its metabolites in the pooled plasma of six subjects after oral administration of 14C-AAP. Pooled plasma specimens collected at 0.25, 0.5, 1, 2, and 8 h were subjected to LC-AMS analysis. 3-O-Sul, AAP-3-hydroxysulfate; 4-O-Sul, AAP-4-hydroxysulfate; AAP, acetaminophen; Glu, AAP-glucuronide; LC-AMS, liquid chromatography–accelerator mass spectrometry.
Radioactivity in kids?
Radiation comparison

- Microdose neonate
- Chest X-ray
- Environment (year)
- Flight in Europe
- Flight to USA

Units: microSv
Paracetamol as probe for UGT and ST

Paracetamol (AAP)

- Glucuronidation
- Sulphation
- CYP + GSH conjugation

Neonate
Birth – 10 days

Neonate
11 days – 1 mth

Infant
1 – 6 mth

Toddler
6 mth – 2 yr

Child
2 – 6 yr
Study aim and design

Aim: To study the **impact of age** on intestinal and hepatic **CYP3A** or **UGT** activity using the oral and IV clearance of **midazolam** or **paracetamol**, respectively.

Design: PK microtracer study, 0-6 yrs of age, n=60, each drug
TNO the Netherlands - AMS facility
14C-Paracetamol microtracer study

- Eligible (n = 232)
 - No informed consent (n = 64)
 - Logistics / other study (n = 118)

- Enrolled (n = 50)
Detectable $[^{14}\text{C}]$paracetamol and metabolites

Patient 1 age 3.6 months
Patient 2 age 10.6 months

![Graph showing concentration (ng/L) vs. time (h) for Patient 1 and Patient 2](image)

Time (h)
Concentration (ng/L)

- [${}^{14}\text{C}]$AAP
- [${}^{14}\text{C}]$AAP-Glu
- [${}^{14}\text{C}]$AAP-4Sul

Mooij, Clin Pharmacokin, 2014
Radboudumc
Dose linear?

Patient 1 age 3.6 months

Patient 2 age 10.6 months

Mooij et al, Clin Pharmacokin, 2014
Radboudumc
Age affects paracetamol metabolism

\[\text{Age affects paracetamol metabolism} \]

\[\text{AUC}_{0-\text{inf}} \]

\[\text{AAP- Glu} \]

\[\text{AAP- Sul} \]

Age 0-6 years (log scale)

Mooij et al, Clin Pharmacokinetic, 2017
Oral bioavailability in children lower?
Challenges for microdosing studies

- Choice of probe drugs
- Dose linearity specific for pathway
- Manufacturing
- Costs
- Perceived radiation risk
- Recruitment
- Practical issues (sampling)
Future opportunities

- Other special populations
 - Pregnancy,
 - Dementia
 - Critically ill
- Metabolites In Safety Testing (MIST)
- Industry?
Acknowledgements

B. Van Groen, PharmD
Dr. M.G. Mooij
Dr. N. Kleiber
Prof. Dr. D. Tibboel
Prof. Dr. K.M. Allegaert
Dr. L.M. Hanff
Dr. B.C.P. Koch
E. Spaans, PharmD

Dr. W. Vaes
Dr. E. van Duijn
Dr. R. de Ligt

Prof. Dr. C.A.J. Knibbe
E Calvier, M.Sc.

Prof. Dr. N.H. Hendrikse
Prof. Dr. A.D. Windhorst

Dr. S. Hartman
14C-Midazolam: Preliminary results

October 2015 – February 2017

n=227 midazolam IV and indwelling catheter

→ Exclusion criteria/logistic issues: n=180

→ No informed consent: n=22

Inclusion: n=25

→ Analyzed with accelerator mass spectrometry: n=9
Dose linearity?

<table>
<thead>
<tr>
<th></th>
<th>De Wildt et al</th>
<th>Our study</th>
<th>Reed et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Preterms</td>
<td>0 – 6 yr</td>
<td>6 mth – 16 yr</td>
</tr>
<tr>
<td>Cmax mida (ng/ml)</td>
<td>161 (38-510)</td>
<td>99.8 (17.6 – 287.1)</td>
<td>55.6 ± 30.2</td>
</tr>
<tr>
<td>Cmax OHM (ng/ml)</td>
<td>25.8 (<0.1-55.3)</td>
<td>12.5 (6.0 – 98.0)</td>
<td>35.6 ± 19.7</td>
</tr>
<tr>
<td>AUC Mida (ng/h/ml)</td>
<td>1532 (225-5715)</td>
<td>659 (47- 1394)</td>
<td>137± 86</td>
</tr>
<tr>
<td>CL Mida (L/h/kg)</td>
<td>0.16 (0.04–0.93)</td>
<td>0.4 (0.2 – 5.3)</td>
<td>3.0 ± 1.4</td>
</tr>
</tbody>
</table>
Effect of age and disease?

<table>
<thead>
<tr>
<th></th>
<th>De Wildt et al</th>
<th>Our study</th>
<th>Reed et al</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Preterms</td>
<td>0 – 6 yr</td>
<td>6 mth – 16 yr</td>
</tr>
<tr>
<td>Cmax mida (ng/ml)</td>
<td>161 (38-510)</td>
<td>99.8 (17.6 – 287.1)</td>
<td>55.6 ± 30.2</td>
</tr>
<tr>
<td>Cmax OHM (ng/ml)</td>
<td>25.8 (<0.1-55.3)</td>
<td>12.5 (6.0 – 98.0)</td>
<td>35.6 ± 19.7</td>
</tr>
<tr>
<td>AUC Mida (ng/h/ml)</td>
<td>1532 (225-5715)</td>
<td>659(47-1394)</td>
<td>137±86</td>
</tr>
<tr>
<td>CL Mida (L/h/kg)</td>
<td>0.16 (0.04–0.93)</td>
<td>0.4 (0.2 – 5.3)</td>
<td>3.0 ± 1.4</td>
</tr>
</tbody>
</table>
Midazolam preliminary results - example

Age 3.3 months

<table>
<thead>
<tr>
<th>Time after microdose (hour)</th>
<th>Plasma concentration (ng/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

- [1^4]C midazolam
- [1^4]C OH-midazolam