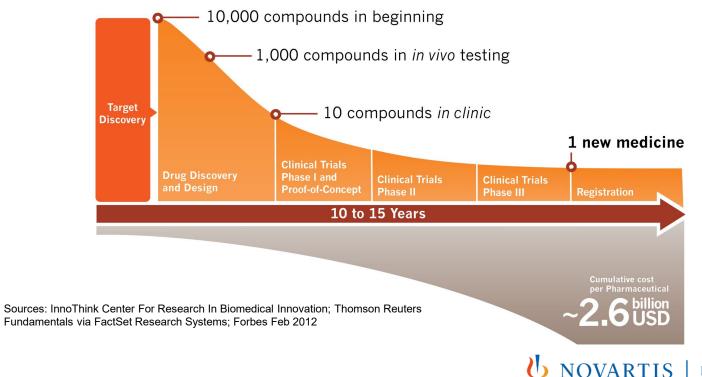


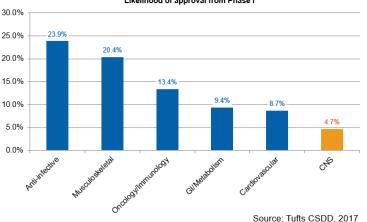
Nextgen endpoints for clinical drug development


Kristin Hannesdottir and Jelena Curcic May 2023

Disclosure

 Kristin Hannesdottir and Jelena Curcic are employees of Novartis and hold Novartis shares

Drug development is a lengthy, costly and risky undertaking

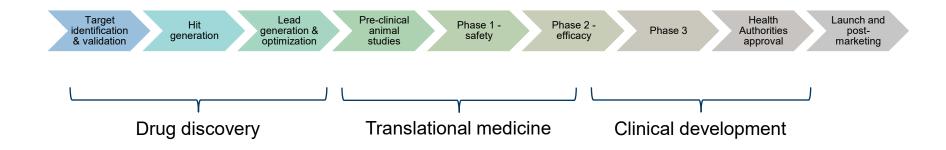


Reimagining Medicine

Goal: Improve accuracy of clinical drug trials

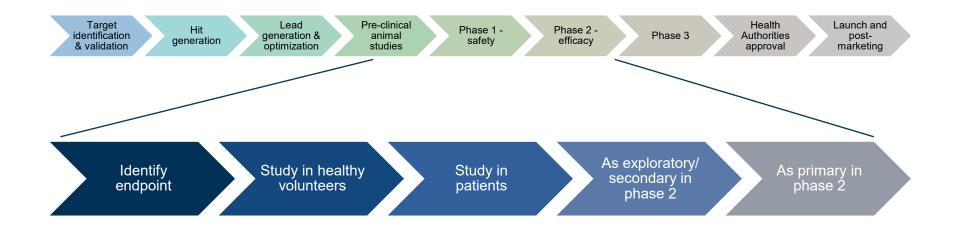
Neuroscience has one of the lowest success rates

- NS endpoints are noisy \rightarrow large sample size
- NS endpoints lack sensitivity \rightarrow lengthy trials
 - Increasing sample size and length of trial is not enough → high failure rate remains


Likelihood of approval from Phase I

Reducing variability and increasing drug signal detection is key to more accurate trials Two examples of how to achieve this:

- 1. More direct physiological assessments with less variability
- 2. More frequent assessments to reduce variability


Drug development

Phases

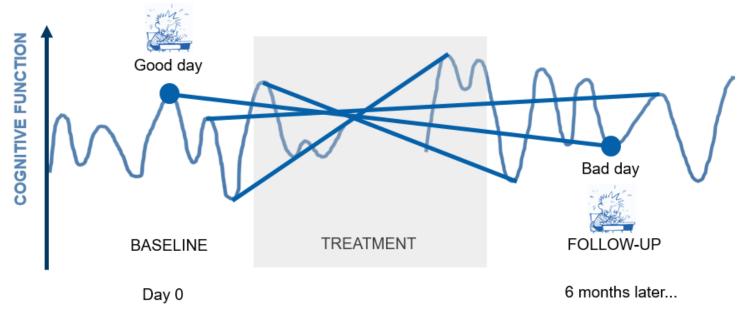
Roadmap for novel endpoint methods

Curcic et al. 2022 <u>JMIR Research Protocols - Description of the Method for Evaluating Digital</u> Endpoints in Alzheimer Disease Study: Protocol for an Exploratory, Cross-sectional Study

How can we increase endpoint accuracy?

- Select established endpoints that are psychometrically appropriate for the indication and stage of disease
- 2. Increase frequency of assessments to reduce variability and increase effect size
- Digitally augment endpoints to increase accuracy and strength of drug signal detection

The whole picture?


A drug trial may require in-clinic visits 4 weeks apart

Increase frequency of assessments

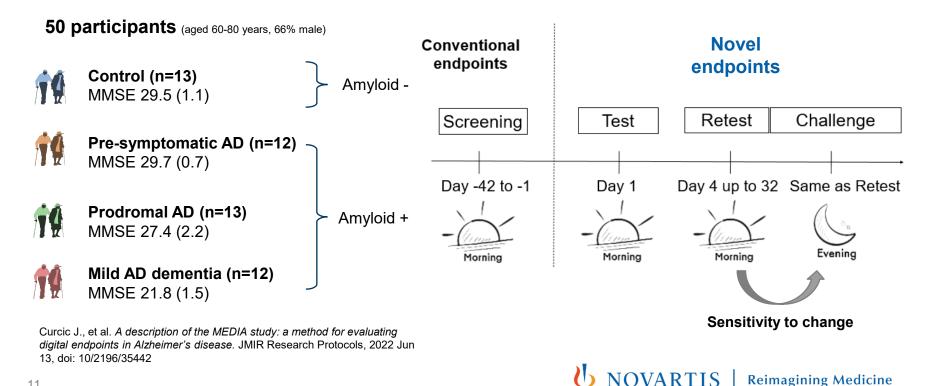
Single time-point, highly variable endpoints can lead to erroneous results:

UNOVARTIS |

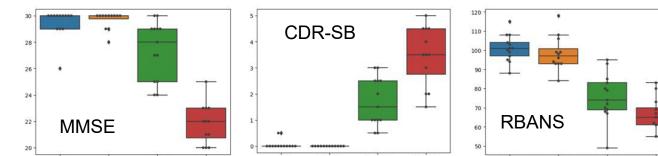
Reimagining Medicine

Adapted from Hassenstab et al. 2017

9


Increase frequency of assessments

More frequent assessments capture true change:


Adapted from Hassenstab et al. 2017

MEDIA study: Digital augmentation of conventional endpoints in Alzheimer's disease

Baseline characteristics

	†4	†	†‡	**	
Demographics	Control	Pre-symtomatic	Prodromal AD	Mild AD dementia	Total
	N = 13	N = 12	N = 13	N = 12	N = 50
Age - Mean (SD)	68 (3.7)	72 (4.3)	71 (4.1)	69 (6.5)	70 (4.9)
Sex (male) – n (%)	9 (69.2)	7 (58.3)	9 (69.2)	8 (66.7)	33 (66)
Education – n (%)					
Higher education	9 (69.2)	4 (33.3)	4 (30.8)	3 (25)	20 (40)
Upper secondary education	4 (30.8)	6 (50.0)	5 (38.5)	6 (50)	21 (42)
Compulsory education		2 (16.7)	4 (30.8)	3 (25)	9 (18)

Digital augmentation in the MEDIA study

Digitized cognitive testing

Cognition-motor dual-task paradigm

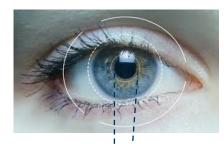
EEG activity

Oculo-motor activity

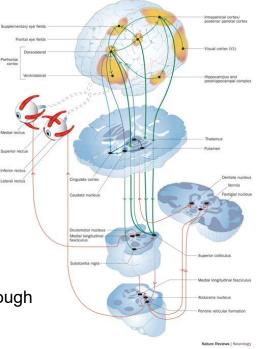
Retinal amyloid biomarkers

Social / emotional cognition

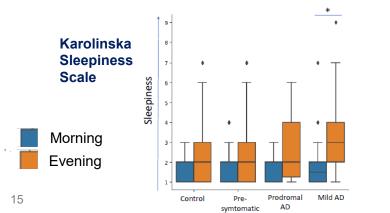
Computerized cognitive tests

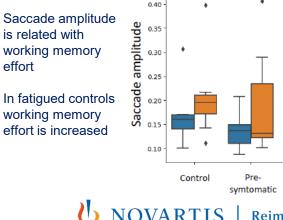


Augmented reality


Voice / speech biomarkers

Oculo-motor activity: A direct physiological measure of cognition?

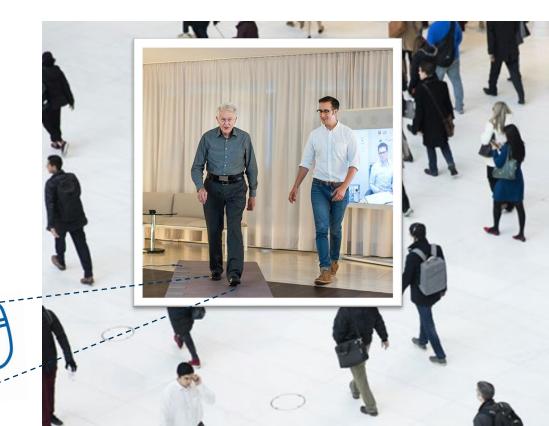

- The eye as a biomarker (Lim et al., 2016)
- Original methods not suitable for clinical trials
- Cognitive testing during eye motor tracking through portable camera or virtual reality headset



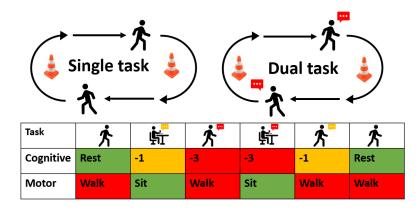
Fielding et al., 2015

Preliminary results: Oculo-motor activity

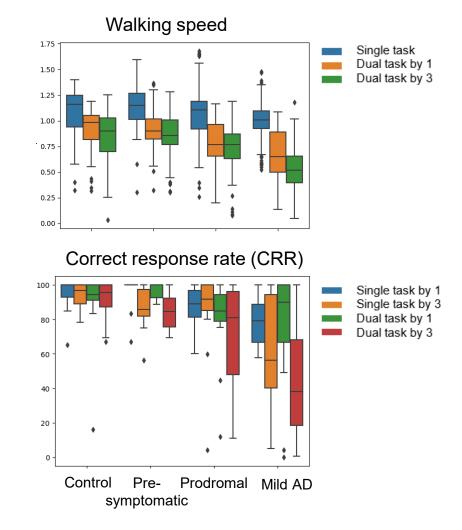
- Oculo-motor activity while participants read 50 grammatically similar sentences
- Cognitive fatigue induced different patterns of oculo-motor activity across cohorts
- Results suggest that oculo-motor activity may reflect changes in cognitive resources induced by a benign challenge model
- Further studies are needed to confirm the potential of eye-tracking during reading as a sensitive and objective measure for clinical drug trials
- Distinguishes clinical stages of early AD

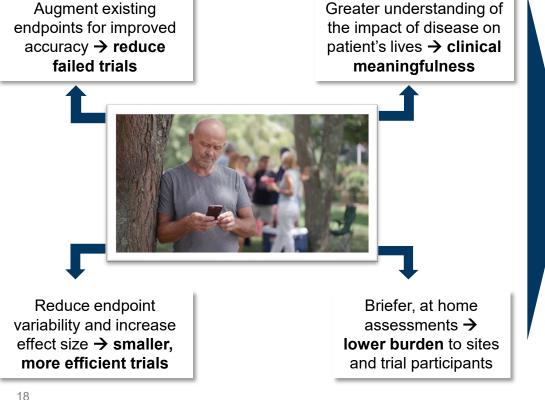

Prodromal

Mild AD


Reimagining Medicine

Gait/cognition dual tasking: A real life measure of cognition?


- In real life we rarely perform one task at a time
- Dual tasking overstrains cognitive capabilities resulting in gait performance decrements
- May detect presymptomatic stages of Alzheimer's disease (Nadkarni et al., 2017)


Dual tasking: preliminary results

- All cohorts show a cognitive-priority trade-off when dual tasking
- The dual tasking paradigm is sensitive to changes in cognitive load

Closing remarks: why stronger endpoints?

Augmented endpoints hold promise to streamline and increase accuracy of early clinical trials \rightarrow de-risking late-stage development and ultimately delivering medicines to patients faster

Acknowledgements

Novartis Translational Medicine

- Kristin Hannesdottir (medical lead)
- Jang-Ho Cha

Novartis Drug Regulatory Affairs

Gul Erdemli (regulatory lead)

Novartis Operations

- Vanessa Vallejo (study lead)
- Mateusz Piksa
- Mark Deurinck
- Huld Sveinbjoernsdottir
- Brynja Einarsdottir
- Steinthora Thorisdottir

Novartis Data Analytics

- Jelena Curcic (digital lead)
- Jennifer Sorinas
- Evan Remington

Novartis Biostatistics

- Alex Sverdlov (statistics lead)
- Jens Praestgaard
- Shivam Gupta

Landspítali University Hospital Memory clinic, Landakot

- Jón Snædal (Principal Investigator)
- Helena Eydal
- Guðbjörg Jóhannsdóttir

Thank you

、イイスイイスイスイ

XXYXXXYX

ϪϓϒϪϒϒϪϒϪϪ ϒϒϪϒϒϪϒϒϪϒ ϪϒϒϪϒϒϪϒ