Activation of PAC1 by maxadilan: a new human target engagement biomarker

Linde Buntinx, Marleen Depre, Els Ampe, Anne Van Hecken, Jan de Hoon

Center for Clinical Pharmacology, Department of Pharmaceutical and Pharmacological Sciences, University Hospitals Leuven, Belgium
Overview

- Background
- Study Design
- Results
- Conclusion
Background (1)

Drugs in clinical trials for central nervous system disorders (1990–2012)

46% of phase III trials discontinued due to lack of efficacy!

Need for in vivo in human target engagement biomarkers to strengthen GO/NO GO decisions

Nature Reviews | Drug Discovery
Background (2)

Focus on migraine: PAC1 receptor
Background (3)

Focus on migraine: PAC1 receptor
PART I: Dose Finding in healthy subjects (n=10)

- Intradermal injection of 3 different doses of maxadilan and placebo on one arm
- Dose escalation over 3 periods with at least 14 days wash-out between periods
PART II: Reproducibility in healthy subjects (n=10)

- Intradermal injection of 1 dose of maxadilan and placebo on both arms
- Reproducibility over time with 14 days wash-out between periods

Prestudy: screening

Period 1: Dose based on part I

Period 2: Dose based on part I

Post-study

3 weeks maximum

14 days

7-14 days
Study Design (3)
Results (1)

PART I: Dose Finding

Dermal Blood Flow (PU) (n=10)

- 0.9ng maxadilan
- 3ng maxadilan
- 10ng maxadilan

- placebo period 1
- placebo period 2
- placebo period 3
PART II: Reproducibility

Area under the curve $0\text{–}180\text{min}$ for DBF in ROI (PU\timesmin) (n=10)

Dermal Blood Flow in ROI (PU) at timepoint 60 min (n=10)

Data are presented as mean ± SEM

CCC = concordance correlation coefficient, AUC = area under the curve, SSC = sample size calculation
Results (3)

PART II: Reproducibility and sample size

<table>
<thead>
<tr>
<th>Inter-arm AUC_{0-180}</th>
<th>Concordance correlation coefficient</th>
<th>Sample size calculation 30% shift</th>
<th>Sample size calculation 50% shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visit 1</td>
<td>0.88</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Visit 2</td>
<td>0.75</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-period AUC_{0-180}</th>
<th>Concordance correlation coefficient</th>
<th>Sample size calculation 30% shift</th>
<th>Sample size calculation 50% shift</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left arm</td>
<td>0.77</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Right arm</td>
<td>0.71</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

$\text{AUC}_{0-180\min}$ = area under the curve from 0-180 minutes post maxadilan injection.
Results (4)

PART II: Duration

DBF (PU) duration: Follow-up until 5 days post-dosing (n=10*)

*Timepoints 6, 8 and 12 hours post-dose were only measured in 5 subjects
Conclusions

- ID maxadilan is safe and well tolerated in healthy male subjects.
- The dose of 0.9 ng was selected as the most appropriate dose for PART II based on the robust increase in DBF.
- DBF response to 0.9 ng maxadilan is reproducible between arms and between periods.
- A sample size of 10-15 subjects is needed to detect a 30-50% shift between 2 independent groups.

This biomarker can be used to evaluate target-engagement of PAC1 antagonists.
Special thanks to...
Linde Buntinx

PhD research fellow

Center for Clinical Pharmacology
University Hospitals Leuven, Belgium

Tel: +32 16 34 20 27
E-mail: linde.buntinx@uzleuven.be