Volumetric Absorptive Microsampling (VAMS™) for blood collection in clinical studies of padsevonil

Hugues Chanteux
UCB Pharma

Christian Otoul, Chiara Rospo, Gregory Lelij, Bart Van Den Steen, David Sciberras

EUFEMED Conference, 15-17 May 2019, Lyon, France
Disclosures

- UCB Pharma-sponsored.
- H Chanteux, C Otoul, and C Rospo are employees of UCB Pharma.
- D Sciberras was an employee of UCB Pharma at the time of the analyses.
- G Lelij and B Van Den Steen are contractors for UCB Pharma.

Disclaimer

- Padsevonil is a pipeline compound in clinical development.
- The clinical significance of nonclinical findings discussed in this presentation is not known.
- The presentation may contain information about unapproved indications and/or use and/or products.
- Licenses may vary by country – please always refer to the Prescribing Information in your country before prescribing any drug.

Acknowledgments

- The authors thank the participants and patients for their participation in the studies, as well as the investigators and their teams who contributed to these studies.
- The authors thank Tasmin Arnould and Bethan Clarke (Veramed, Twickenham, UK) for contribution to the data analysis, and York Bioanalytical Solutions Ltd. for supporting the bioanalytical method validation and study sample analysis.
- The authors acknowledge Barbara Pelgrims, PhD (UCB Pharma, Brussels, Belgium) for managing the development of the presentation, and Michaela Fuchs, PhD, CMPP (Evidence Scientific Solutions, Horsham, UK) for editorial assistance, which was funded by UCB Pharma.
Agenda

- **Background information**
 - Volumetric Absorptive Microsampling (VAMS™)

- **Methodology**
 - Implementation

- **Results**
 - Bioanalytical validation
 - Bridging of clinical data

- **Conclusions**
Background information

Volumetric Absorptive Microsampling (VAMS™)

Novel technique

Enable accurate collection of small (10 µL) blood volumes

- Mitra® microsampler (Neoteryx LLC, Torrance, CA) is an absorbent polymeric tip
- Blood is collected by dipping the Mitra® microsampler into a blood bead after skin prick
- After blood collection, Mitra® is air-dried and stored at room temperature

Image source: Neoteryx LLC
Volumetric Absorptive Microsampling (VAMS)
Background information

Volumetric Absorptive Microsampling (VAMS™)

Added value of Mitra® for collection of PK samples in clinical studies

- Decreased patient burden
 - Less invasive technique (pediatric application) compared to venous method
 - Low blood volume (10µL) ↔ conventional blood sampling (1mL)

- Reduced operational burden improving logistical feasibility
 - Storage and shipment at room temperature – No need for freeze-thaw cycles
 - No need for centrifugation, plasma separation, and aliquoting

- Flexibility in collection of PK data in Phase 2/3 studies
 - Home sampling possible → sparse PK sampling not limited to time window during clinical visit
Methodology

Implementation of Mitra® in a global drug development program

Padsevonil (PSL) is a drug in development (Phase 2b/Phase 3) for the treatment of patients with epilepsy and drug-resistant focal seizures.

- Feasibility assessment
- Bioanalytical validation (FDA & EMA)
- Bridging with plasma data obtained in healthy volunteers and in patients
Results

Bioanalytical validation

The bioanalytical method was demonstrated to be accurate, precise, and selective for quantification of PSL over a clinically relevant concentration range (2-2000 ng/mL)

Accuracy and precision of PSL intra-run and inter-run in Mitra® (N=18)

<table>
<thead>
<tr>
<th>Nominal PSL concentration</th>
<th>2.0 ng/mL</th>
<th>6.0 ng/mL</th>
<th>1000 ng/mL</th>
<th>1600 ng/mL</th>
<th>2000 ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean intra-run precision, %CV</td>
<td>13.3</td>
<td>7.1</td>
<td>5.3</td>
<td>5.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Mean intra-run bias, %</td>
<td>−7.0</td>
<td>0.4</td>
<td>1.5</td>
<td>1.3</td>
<td>3.7</td>
</tr>
<tr>
<td>Inter-run precision, %CV</td>
<td>13.2</td>
<td>6.9</td>
<td>5.7</td>
<td>5.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Inter-run bias, %</td>
<td>−7.0</td>
<td>0.5</td>
<td>2.0</td>
<td>1.3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Haematocrit effect on PSL (N=6)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>6.0 ng/mL</th>
<th>1000 ng/mL</th>
<th>1600 ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haematocrit</td>
<td>30%</td>
<td>50%</td>
<td>70%</td>
</tr>
<tr>
<td>Precision, %CV</td>
<td>14.7</td>
<td>3.5</td>
<td>9.1</td>
</tr>
<tr>
<td>Bias, %</td>
<td>15.3</td>
<td>9.5</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Results

Bridging of clinical data

Mitra® blood vs plasma concentrations following oral administration of PSL

Healthy participants (UP0057; N=28)

- Parameter estimates – R2
- Intercept = 2.3231
- Slope = 0.6478
- R-square = 0.9614

Patients with epilepsy (UP0070; N=14)

- Parameter estimates – R2
- Intercept = −12.93
- Slope = 0.7641
- R-square = 0.8725
Results

Bridging of clinical data

Bland-Altman plot comparing results from Mitra® and venous plasma sampling following oral administration of PSL in patients with epilepsy (UP0070; N=14)

Blood PSL exposure was ~34% lower than plasma exposure

This is in close agreement with the measured *in vitro* blood to plasma ratio of PSL (0.7)
Results

Bridging of clinical data

Analysis of variance of PK parameters of Mitra® vs venous sampling following single dose (100 mg) administration of PSL in healthy participants (UP0057; N=28)

<table>
<thead>
<tr>
<th>PK parameter</th>
<th>Venous geometric mean (95% CI)</th>
<th>Mitra® geometric mean (95% CI)</th>
<th>Ratio (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}, ng/mL</td>
<td>459 (408, 517)</td>
<td>315 (280, 355)</td>
<td>0.687 (0.597, 0.790)</td>
</tr>
<tr>
<td>AUC$_{(0-12 \text{ h})}$, h*ng/mL</td>
<td>1780 (1560, 2040)</td>
<td>1130 (983, 1290)</td>
<td>0.632 (0.538, 0.741)</td>
</tr>
</tbody>
</table>

Blood PSL exposure was ~34% lower than plasma exposure
This is in close agreement with the measured *in vitro* blood to plasma ratio of PSL (0.7)
Conclusions

Volumetric Absorptive Microsampling (VAMS™)

VAMS™ is a novel technology for collection of PK samples

- Reduced blood sampling volumes, ease of collection, transportation and storage compared with conventional plasma sampling

Bioanalytical method for quantification of PSL using VAMS™ has been successfully validated

PK data obtained with VAMS™ have been bridged with plasma in both healthy study participants and patients with epilepsy

UCB Pharma has implemented the use of VAMS™ (Mitra®) for collection of PK samples in global development studies

PK, pharmacokinetic; PSL, padsevonil.
Questions?
Thanks!