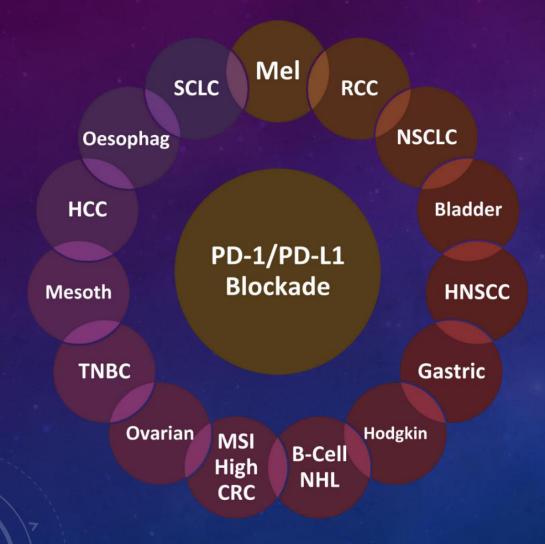


ASSOCIATE PROFESSOR IN MEDICAL ONCOLOGY

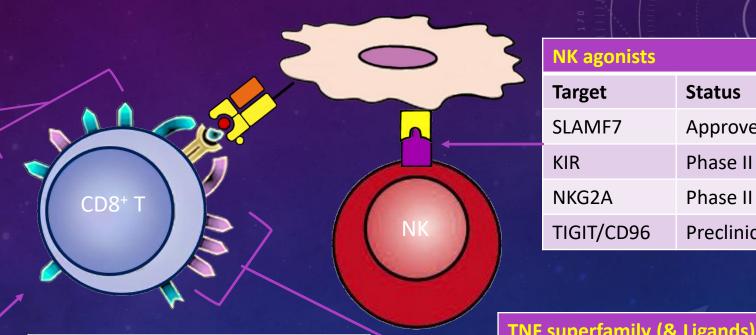
UNIVERSITY OF SOUTHAMPTON


Southampton

OVERVIEW

- Immuno-oncology("I-O") & Immune-related ("IR") toxicity
 - What is the impact of I-O in the current early phase trial landscape
 - What are the safety related challenges of I-O IMPs in early phase studies?
 - How do they differ from traditional IMPs?
 - What are the challenges inherent in monitoring /managing/ reporting IR AEs?
 - How can we mitigate these risks and design trials that are both safe and efficient?

IMMUNO-ONCOLOGY HAS COME OF AGE



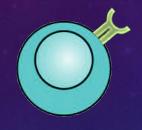
- Immune checkpoint inhibitors licensed for use in melanoma, NSCLC, RCC and TCC
- Promising results in trials; potentially >50% of all cancer patients may be eligible for treatment with currently licensed agents

LYMPHOCYTE TARGETING AGENTS IN DEVELOPMENT

CD28/CTLA-Ig family				
Target	Status			
CTLA-4	Approved			
PD 1/PDL1-2	Approved/PII			
BTLA	Preclinical			
LAG3	Phase II			
ICOS	Phase I			
TIGIT/CD96	Preclinical			

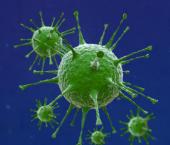
Galectin driven pathways						
Target Status						
TIM-3	Phase I					
Galectin 1/3/9	Phase II					

NK agonists				
Target	Status			
SLAMF7	Approved			
KIR	Phase II			
NKG2A	Phase II			
TIGIT/CD96	Preclinical			


Cytokines/Chemokines				
Target	Status			
IFN γ	Approved			
IL2	Approved			
CXCR4	Phase II			
TGFb	Phase II			
CCR2	Phase II			
CCR4	Approved(Jpn)			

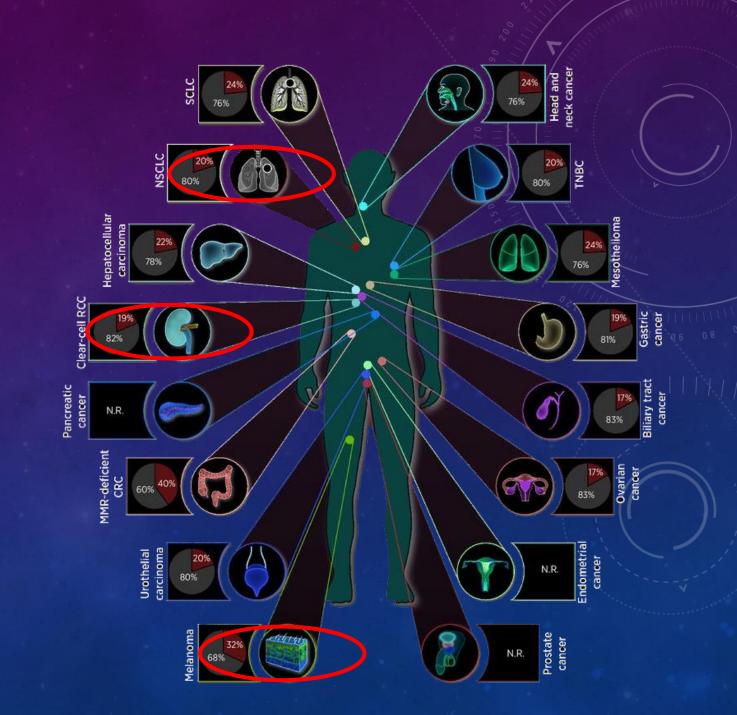
The superiality (& Ligarius)				
Target	Status			
CD40/CD40L	Phase II			
OX40	Phase I/II			
CD137(4-1BB)	Phase II			
GITR	Phase I			
CD27/CD70	Phase II			

ALSO IN ACTIVE DEVELOPMENT:

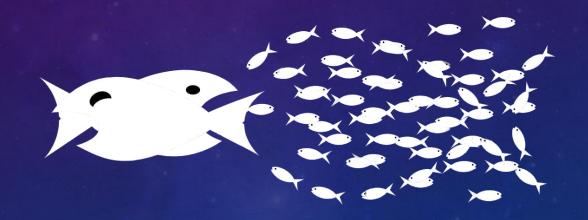

Adoptive T cell therapies (TILs / γδ T cells)

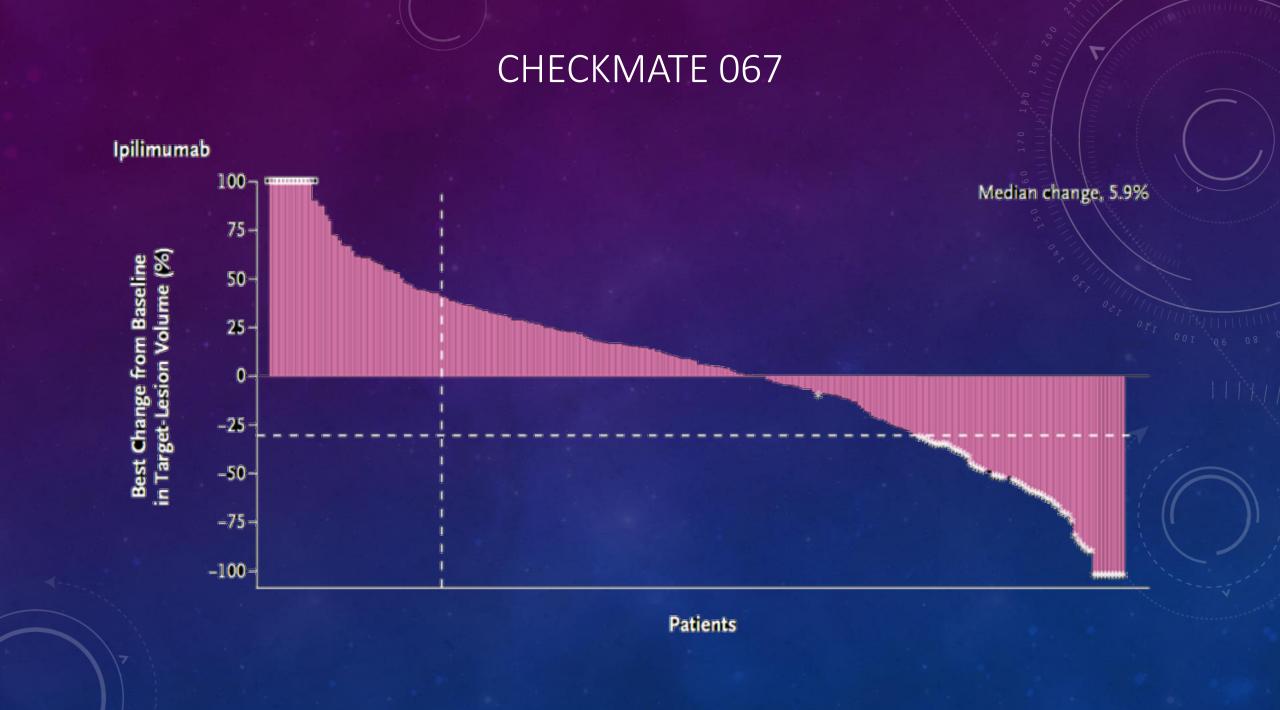
CAR –T cell therapies

Vaccination approaches

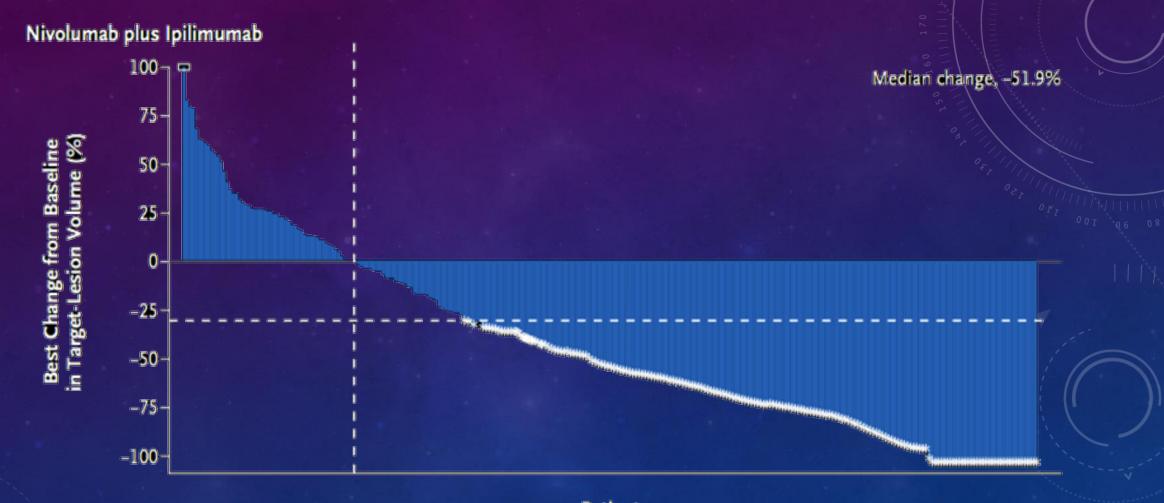

Oncoviral therapies

SINGLE AGENT ACTIVITY


Response rates typically <30%


Modified from Chabanon et al CCR; 22(17) Sep 1, 2016

HOW TO COMBAT MULTIPLE CONCURRENT IMMUNE ESCAPE MECHANISMS?



Combinatorial Immunotherapeutics!

CHECKMATE 067 Nivolumab 1007 Median change, -34.5% 75= Best Change from Baseline in Target-Lesion Volume (%) 50-**25**--25--50-**-75**= -100-**Patients**

Patients

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	Anti-CTLA-4	Anti-PD-1			
	Ipilimumab	Nivolumab	1–3	Melanoma, uveal mel., NSCLC, SCLC, CRC, liver cancer, breast cancer, RCC, lymphoma, multiple	NCT01844505, 02477826,02538666, 02374242,02060188,
				myeloma, glioblastoma, gliosarcoma	01658878,02453620, 01592370,02210117, 01585194,02311920
	Anti-LAG-3	Anti-PD-1			
	LAG525	PDR001	1/2	Advanced cancer	NCT02460224
Blockade of T	BMS-986016	Nivolumab	1/2	Advanced solid tumors	NCT01968109
cell inhibition	REGN3767	REGN2810	1	Advanced cancer	NCT03005782
	Anti-TIM-3	Anti-PD-1			
	MBG453	PDR001	1/2	Advanced cancer	NCT02608268
	TSR-022	TBD	1/2	Advanced Solid Tumors	NCT02817633
	Anti-Galectin 3	Anti-CTLA4			
	GR-MD-02	Ipilimumab	1	Melanoma	NCT02117362
	Anti-Galectin 3	Anti-PD-1			
	GR-MD-02	Pembrolizumab	1	Melanoma	NCT02575404
	Anti-TIGIT	Anti PDL1			
/7	MTIG7192A	atezolizumab	1	Advanced cancer	NCT02794571

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	Anti-4-1BB (CD137)	Anti-PD-1/PDL1			
	Urelumab	Nivolumab	1/2	Advanced solid tumors, B cell non- Hodgkin lymphoma	NCT02253992
	PF-05082566	MK3475	1	Advanced solid tumors	NCT02179918
	PF-05082566	Avelumab	2	Melanoma, lung, head and neck cancer	NCT02554812
	Anti-OX40	Anti-CTLA-4			
Tooll	MEDI6469	Tremelimumab	1/2	Advanced solid tumors	NCT02205333
T cell		Anti-PD-L1			
costimulation	MEDI6383	MEDI4736	1	Advanced solid tumors	NCT02221960
	Anti-ICOS	Anti-PD-1			
	JTX-2011	nivolumab	1/2	Advanced solid tumors	NCT02904226
	Anti-CD27	Anti-CTLA-4			
	Varlilumab	Ipilimumab	1/2	Melanoma	NCT02413827
		Anti-PD-1/PDL1			
	Varlilumab	Nivolumab	1/2	Advanced solid tumors	NCT02335918
	Varlilumab	Atezolizumab	1/2	Advanced tumors, RCC	NCT02543645

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	Peptide vaccines	Anti-CTLA-4			
	6МНР	Ipilimumab	1/2	Melanoma	NCT02385669
		Anti-PD-1			
	6МНР	Pembrolizumab	1/2	Melanoma	NCT02515227
	Tumor cell vaccine	Anti-CTLA-4			
	GVAX	Ipilimumab	2	Pancreatic cancer	NCT01896869
Therapeutic		Anti-PD-1			
	GVAX	Nivolumab	2	Pancreatic cancer	NCT02243371
Cancer	GM.CD40L	Nivolumab	1/2	Lung cancer	NCT02466568
Vaccines	Viagenpumatucel-L	Nivolumab	1	NSCLC	NCT02439450
	Vigil	Pembrolizumab	1	Melanoma	NCT02574533
	BCG	Ipilimumab	1	Melanoma	NCT01838200
	Dendritic cell vaccine Anti-PD-1				
	Sipuleucel-T	Pidilizumab	2	Prostate cancer	NCT01420965
	AML fusion vaccine	Pidilizumab	2	AML	NCT01096602
	DNA vaccine	Anti-PD-1			
	pTVG-HP plasmid	Pembrolizumab	1/2	Prostate cancer	NCT02499835

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	Oncolytic virus Anti-CTLA-4				
	T-VEC	Ipilimumab	1b/2	Melanoma	\$2 (////
Viro therapy					NCT01740297
		Anti-PD-1	41-72	N.A. Lawrence	NCT022C2F00
T-VEC Pembrolizumab IDO1 inhibitor Anti-PD-1		1b/3	Melanoma	NCT02263508	
	Epacadostat		1/2	Advanced solid tumors	NCT02178722
	Anti-PD-L1				
IDO inhibitors	Epacadostat	Durvalumab	1/2	Advanced solid tumors	NCT02318277
	Epacadostat	Atezolizumab	1	NSCLC	NCT02298153
		Anti-CTLA-4			
	Epacadostat	Ipilimumab	1/2	Melanoma	NCT01604889

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	BRAFi + MEKi Anti-PD-1				
	Dabrafenib + trametinib		1/2	Melanoma	NCT02130466
		Anti-PD-L1			
Townsteed	Dabrafenib + trametinib	Durvalumab	1/2	Melanoma	NCT02027961
Targeted therapy	Dabrafenib + trametinib	Atezolizumab	1	Melanoma	NCT01656642
	EGFRi	Anti-PD-1			
	Gefitinib or erlotinib		1/2	NSCLC	NCT02039674
	Gefitinib	Tremelimumab	1	NSCLC	NCT02040064
		Anti-CTLA-4			
	Cetuximab + radiation		1	Head and neck cancer	NCT01935921

		y targets and drugs used	Trial phase	Tumour types	Trial reference
	DNMTi	Anti-CTLA-4			
	SGI-110	Ipilimumab	1	Melanoma	NCT02608437
	HDACi	Anti-PD-1			
Epigenetic	Vorinostat	Pembrolizumab	1/1b	RCC	NCT02619253
therapy	Entinostat	Pembrolizumab	1b/2	NSCLC, melanoma	NCT02437136
	Entinostat	: Anti-PD-1/CTLA-4 nivolumab + ipilimumab		Breast cancer	NCT02453620
	DNMT + HDACi	Anti-PD-1			
	Azacitidine + entinostat		2	NSCLC	NCT01928576

	Immunotherapy targets and drugs used		Trial phase	Tumour types	Trial reference
	Stereotactic body RT	Anti-CTLA-4			
Radiotherapy		Ipilimumab	2	Melanoma, liver, lung cancer	NCT01970527 NCT02107755 NCT02239900
		Tremelimumab	1	Unresectable pancreatic cancer	NCT02311361
		Anti-PD-1			
		Nivolumab	2–3	Glioblastoma, triple-negative breast cancer	NCT02617589 NCT02499367
	Chemotherapy	Anti-PD-1			
	Temsirolimus, irinotecan, capecitabin		1/2	Advanced tumors	NCT02423954
Chemotherapy	Nab-paclitaxel, gemcitabine, carboplatin		1	Pancreatic, breast, NSCLC	NCT02309177
	Paclitaxel, carboplatin, pemetrexed		1/2	Lung cancer	NCT02039674
	19 1 19 12 1 12 1 12 1 12 1 12 1 12 1 1	Anti-CTLA-4			
	Gemcitabine	. Ipilimumab	1	Pancreatic cancer	NCT01473940

Modified & updated from Vilgelm et al, JLB vol. 100 no. 2 275-290 (2016)

I-O ONCOLOGY PHASE I TRIALS

- 573 recruiting I-O Phase 1 studies currently registered in clicaltrials.gov
 - 375 studies incorporating anti PD-1/PD-L1 agents
 - 19 studies incorporating anti CTLA-4 agents
 - 179 trials incorporating other I-O IMPs / modalities
- 11% of all Phase 1 studies and 20% of all oncology P1 studies!
- Vast majority involve IMP combinations

ONCOLOGY TRIAL PATIENT CHARACTERISTICS

- Highly motivated (& often well informed)
 - Prepared to accept significant morbidity/mortality risks
 - Prepared to accept low/minimal chance of benefit
 - Risk of underreporting AEs
- Limited window of opportunity for individual subjects
- Often heavily pre-treated with long term toxicities
- Long term toxicity monitoring challenging
 - Cross-over to further treatments
 - Short OS due to underlying disease process

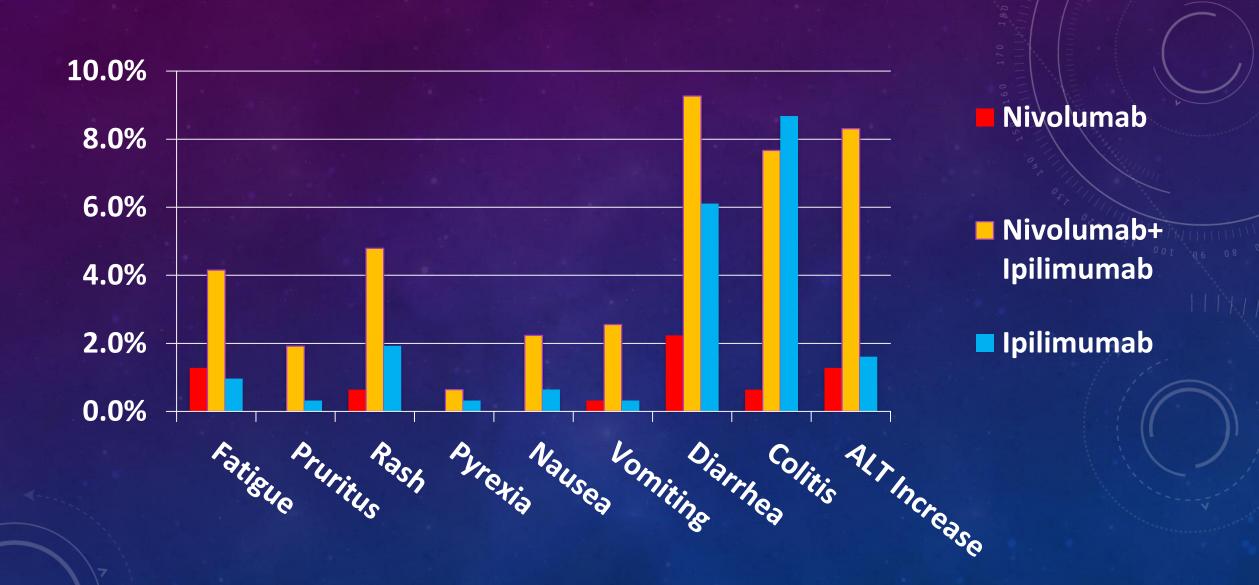
Data from Khoja et al, J Imm Can , **doi** : 10.1186/s40425-015-0078-9

TRENDS IN I-O EARLY PHASE TRIALS

- Increasing use of modular / adaptive designs
 - Expansion cohorts clearly looking at efficacy endpoints
 - Aim for breakthrough designation, accelerated or conditional approval
- MTD very rarely reached
- DLT definition challenging
- Focus on biomarker discovery / validation

IMMUNE RELATED TOXICITY

- Any adverse event mediated by the immune system causally related to the IMP
- Can affect any organ system in the body
 - Concurrent toxicities frequent, particularly in the context of combination IT
 - May result in flare / reactivation of pre-existing auto-immune conditions
 - Long recovery time course
 - Can result in irreversible end-organ damage
 - Beyond a certain threshold supportive management insufficient

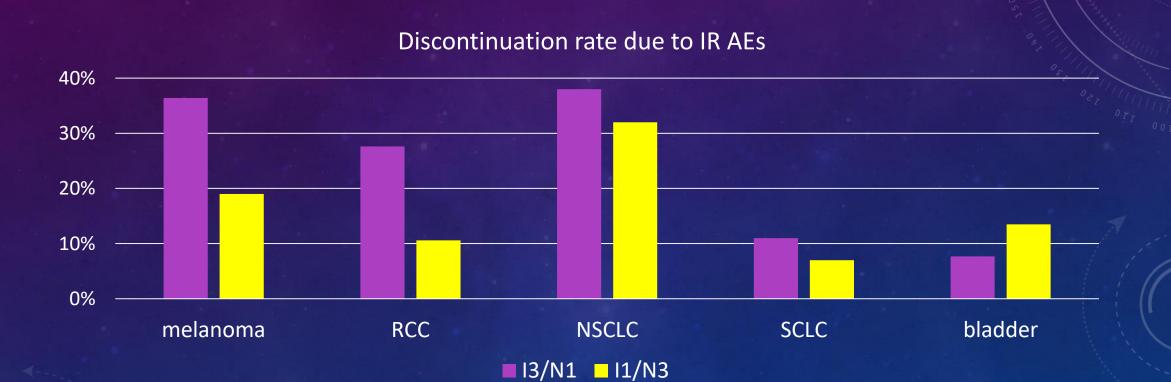


NIVOLUMAB TOXICITY RATES

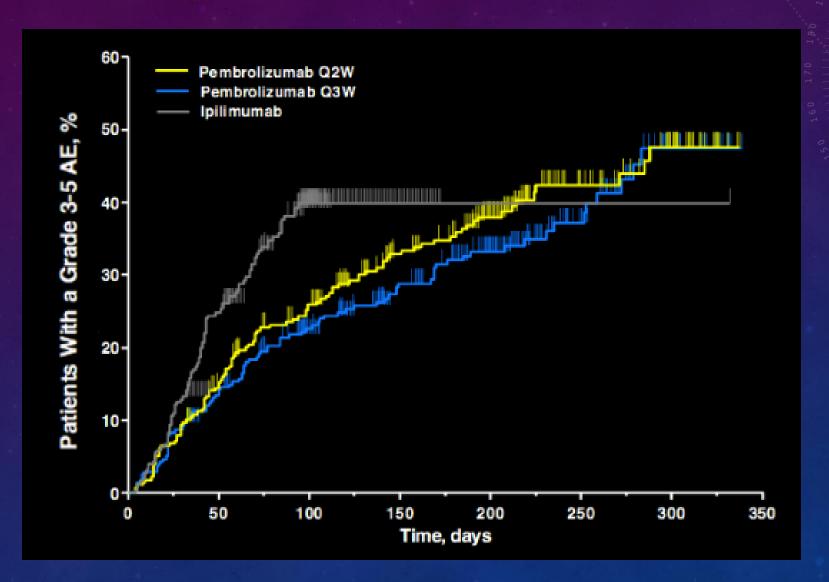
	N=	Colitis	Pneumonitis	Hepatitis	Nephritis	Hypo- thyroidism
NSCLC	418	2.2	3.1	0.2	0.7	6.5
RCC	406	3.2	4.4	1.5	3	8.1
HL(post HSCT)	263	0.4	3.4	2.3	3.8	9.5
HNSCC	236	0.8	0.8	0.4		8.1
urothelial	270	2.6	3.7	1.1	0.7	10.7
melanoma	576	1	1.9	2.8	1.4	5.2

Data from OPDIVO® [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2017 & Weber et al, JCO 2017, DOI: 10.1200/JCO.2015.66.1389

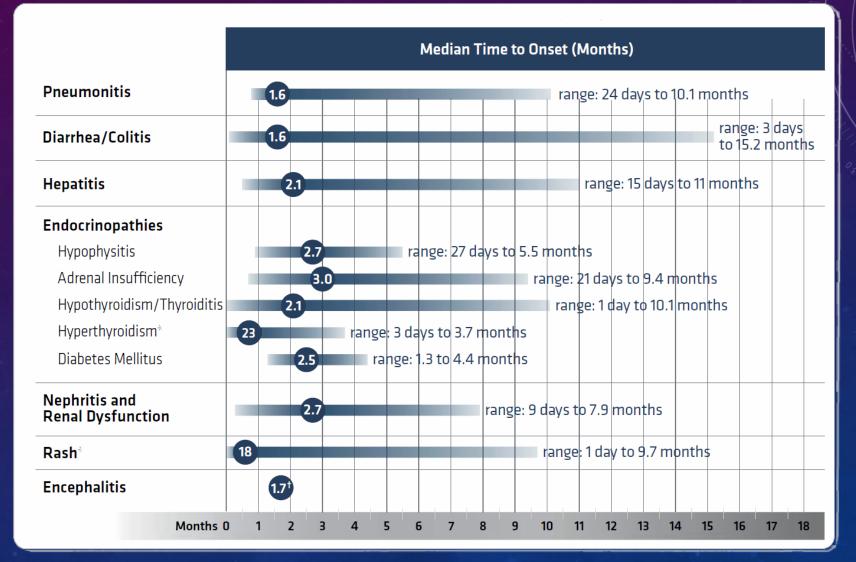
CHECKMATE 067- GRADE 3-4 TOXICITIES



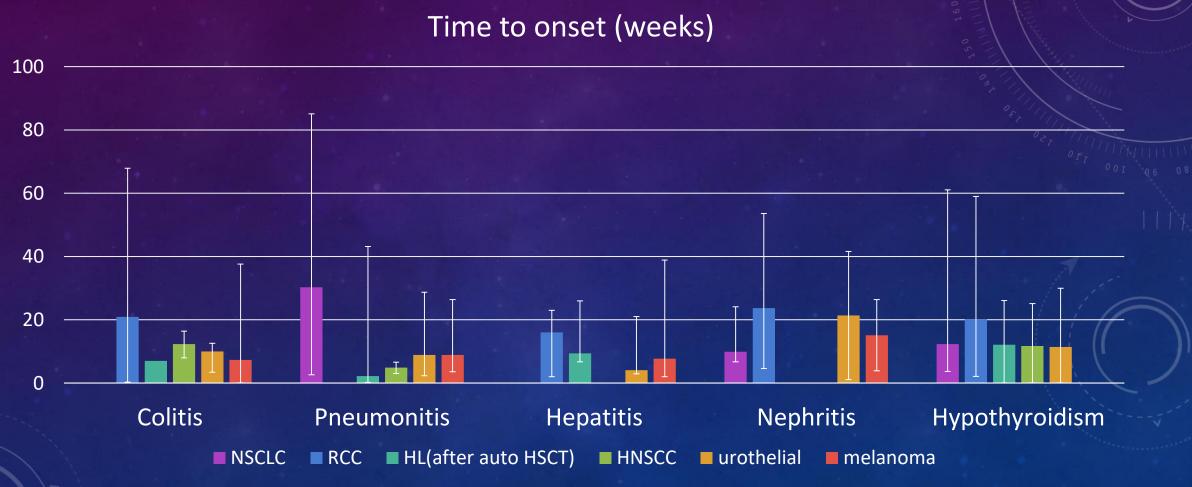
COMBINATION IMMUNOTHERAPY TOXICITY



IR-TOXICITY RELATED DISCONTINUATION



TIME TO ONSET OF SEVERE ADVERSE EVENTS


Modified from Robert et al NEJM 19.4.2015

IPILIMUMAB & NIVOLUMAB IN MELANOMA

Aggregated data from CHECKMATE 067 & 069; Modified from OPDIVO® [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2017.

NIVOLUMAB AE KINETICS

Data from OPDIVO® [package insert]. Princeton, NJ: Bristol-Myers Squibb Company; 2017 & Weber et al, JCO 2017, DOI: 10.1200/JCO.2015.66.1389

IR TOXICITY — IMPORTANT CONSIDERATIONS

- Toxicity may be long term and/or irreversible(duration of action far exceeding half life)
- Predicting nature and intensity of combinatorial toxicity from single agent toxicity is challenging
- Toxicity depends not only on agent(s) and total dose but also on
 - Scheduling
 - Individual patient characteristics (age, HLA type, micriobiome, tumour load etc)
 - Specific indication (tumour type)
- Cancer patients immune systems are NOT normal

PREDICTING TOXICITY: PRECLINICAL STUDIES

- Animal models problematic
 - Immunocompromised hosts innately unsuitable
 - Immune system make-up different (e.g. CD28 expression patterns cf TGN1412)
- In vitro/ex-vivo models cannot fully recapitulate complexity of immune system & large intra & intersubject variability
- Too early for in-silico models to be of use

TGN1412 – A CAUTIONARY TALE

In vivo – cynomolgous monkeys

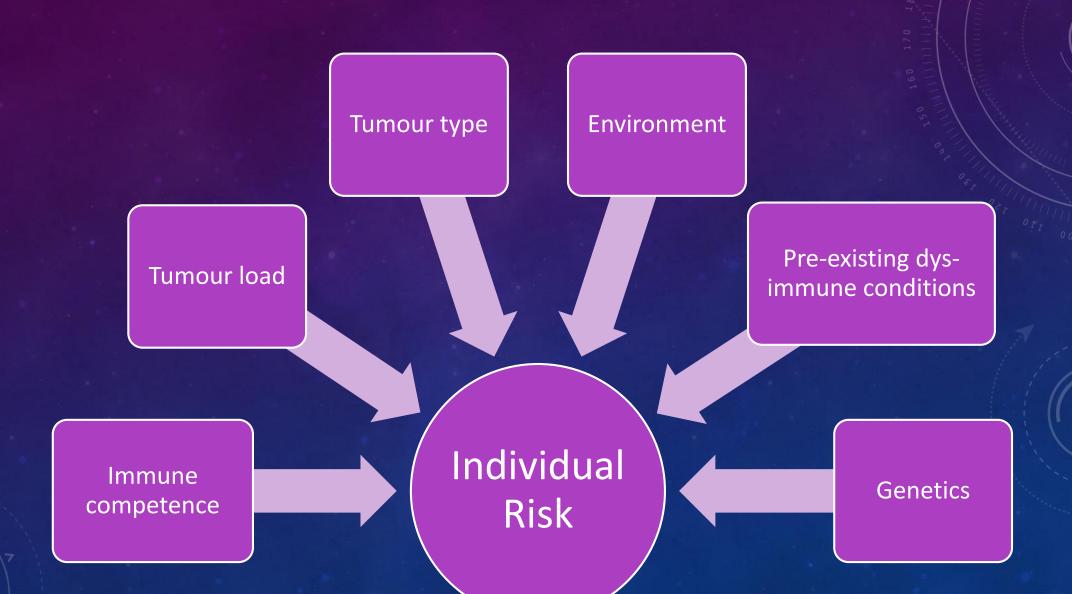
100% sequence homology,equivalent binding affinity& tissue staining

CD4 EM T cells do not express CD28

Naïve/CM T cells require costimulation

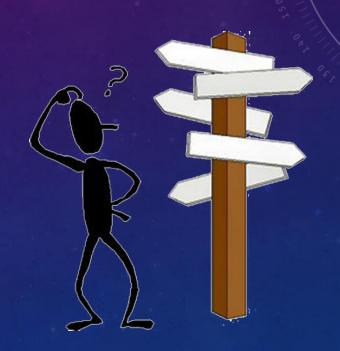
In vitro- human PBMCs

Used TGN1412 in solution


CD4 EM T cells found predominantly in tissues

Starting dose

1/500 of noobservable adverse effect dose in monkeys


45-80% receptor occupancy in humans

PREDICTING TOXICITY: PATIENT CHARACTERISTICS

PREDICTING TOXICITY: BIOMARKERS

- Genetic predisposition
 - Polymorphisms e.g CTLA 4
 - HLA haplotypes
- Microbiome
- IL17 / eosinophil count
- Gene Expression Profiling

IDENTIFYING IR TOXICITY

- Early symptoms non-specific
 - Often mimic other conditions
 - Screening essential
- Specialist input & investigations required
- Late presentations not unusual

MANAGING IR TOXICITY

Early identification

High index of suspicion

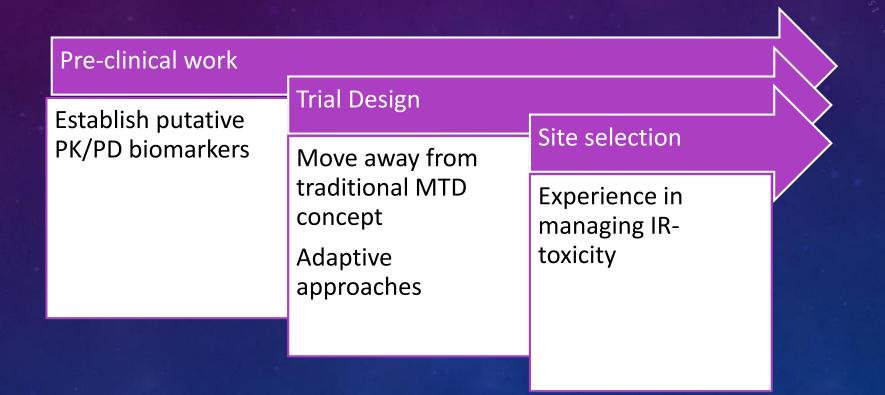
Knowledge of regime & site specific rare toxicities

Late toxicities common

Prompt pharmacological intervention

Discontinuation & supportive measures insufficient

Clear guidelines


Slow tapering

Close monitoring

Relapses frequent

Specialist input essential

MITIGATING IR TOXICITY

MITIGATING IR TOXICITY — PRE CLINICAL DEVELOPMENT

Right target

• Strong link between target pathway & disease

Right tissue

Understanding of tissue specific PK/PD

Right safety

• Human data (ex vivo/in vitro) essential

Right patients

Determine subgroups more at risk of toxicity

Biomarkers essential!

MITIGATING IR TOXICITY- TRIAL DESIGN

Target population

Cohort driven
Adaptive design

Starting doses

Minimal anticipated biological effect

On treatment

Individual/cohort based dose interruption rules

Clear management guidelines Dose Escalation Decisions

PK/PD as well as toxicity led

Biopsies important

RP2D

Optimal biological dosing

EXAMPLE MANAGEMENT GUIDELINES

Grade 1 (mild)

Manage symptomatically

Grade 2

(moderate)

- Initially manage symptomatically
- If *persistent* interrupt treatment + commence steroids (pred 0.5-1 mg/kg)

Grade 3-4

(severe)

- Interrupt treatment (possibly permanently)
- Hospitalise, investigate & com mence immunomodulating treatment

MITIGATING IR TOXICITY — SITE SELECTION

- Competence & Experience in dealing with IR-AEs
- Sufficient resources for increased workload caused by adaptive/ multi-arm designs
- High level cross-specialty support
- Capability for collection & processing of PK/PD samples

IR- TOXICITY: OPEN CHALLENGES

- Large variability across patient groups & within individual patients at different time-points
- Late onset severe toxicities
- Underestimates of rare toxicities
 - Difficult to detect even in large Phase I studies with heterogeneous multiple expansion cohorts
 - Proper Phase III / post marketing authorisation studies essential
- Prediction of combinatorial toxicity
- Transparency and communication

SUMMARY

- IO has accelerated a paradigm shift in early phase trial design
- Lack of suitable animal & in vitro models pose significant safety related challenges
- Pressing need for predictive biomarkers
- Careful trial design and management critical to mitigate toxicity concerns

